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Preliminaries

Linear Differential Equations

We begin by recalling some basic definitions relevant to the study of differential
equations.

Definition. An ordinary differential equation of order n, written in normal
form, is a relation between a variable ¢t € I C R, a function z : R D I — R, and
its derivatives:

= f (t,x,m’, ...x(”_l))

where ¢, when interpreted physically, represents time in most situations.

Definition. An ODE is called linear if the right-hand side of the above equa-
tion can be written as:

ftz . a1y = — <z_: ak(t)xk> +0(t).
k=0

where the coefficients a(t) can sometimes be t—dependent and sometimes con-
stants. Combining these two notations, we can write:
2"+ ap_1 ()2 Y 4 a2 (t) + ao(t)x(t) = b(t) *)
Definition. The Characteristic Polynomial associated with (x) is defined by:
Lt,A) = A"+ an 1 ()N 4o ag (D)X + ap(t)

d
Let D = 7 50 Dx =2a', D>x =", ... Then (x) <= L(t,D)x = b(t).
L(t, D) is called a differential operator.

Definition. A linear differential equation is called homogenenous if b(t) = 0.
Otherwise, we have an inhomogeneous equation.



So how do we solve such equations? The truth is, that many differential equa-
tions, particularly those that arise in real-world applications, can be too com-
plicated to solve analytically. As a result, we often opt for numerical approx-
imations and investigate more efficient computational algorithms. Analytical
solutions are often only possible for simple or idealized cases. However, it is
a fruitful effort to focus on such idealized cases in pursuit of analytical meth-
ods, since they provide insight into the fundamental behavior of the system
described by the differential equation. What follows is a rigorous study of the
most common cases where analytical solutions are achievable.

Linear Homogeneous Equations with Constant Coefficients

Assume that b(t) = 0, and a; is independent of ¢. So, (*) is homogeneous with
constant coefficients. In this case, L is independent of t. So, we write:

L) =X"4a, 1 A"V . Fard+ag
In this case, (%) can be written as: L(D)z = 0.
Lemma. Let 4 € C. Then:

L(D)(e"g(t)) = e" L(D + p)g(t)

Proof. By the product rule, we have that:

D(etg(t)) = D(e")g(t) + e** Dy(t)
= et g(t) + e Dy(t)
= e"(D + p)g(t)

‘We observe that:

D?(eMg(t)) = D(e"(D + p)g(t))
— (D + p)g()

And by induction:
D*(eg(t)) = e (D + n)*g(t)

Since L(D) is a linear combination of D*, it follows that

L(D)(e"g(t)) = " L(D + p)g(t)m

Theorem. Let A1, \a, ..., A, be the roots of L(\) with multiplicities ny,na, ..., ny,

respectively.



For arbitrary polynomials p; of degree < nj — 1,

x(t) = Zpk (t)et

k=1

is a solution of L(D)xz = 0; conversely, every solution of L(D)x = 0 is of this
form.

Proof. We will prove that z(t) is a solution. Since L(D) is a linear opera-
tor, we have that:

L(D) (meem)
k=1
= 5" L(D)(pr(t)e)
k=1

So it is enough to show the following for any k:
L(D)(px(t)e™") = 0;
By the lemma , we have that:
L(D)(pr(t)e") = e L(D + A) Pi(t)
Since Ay is a zero of order ny,
L(A) = (A= Xe)"q(A).

This implies that L(A + Ag) = A" q(X + A\g).
This is a polynomial in A where each term is at least of order ny.

So: L(D + Ai)pi(t) = 0, since py, has degree < ny, — 1M

Inhomogeneous Equations

Theorem. Every solution of L(¢, D)x = b(t) can be written as:
2(t) = wn(t) + xp(t)

where z,(¢) is a solution of (%) and zj(t) is a solution of the corresponding
homogeneous equation.

Remark. The above theorem means that once we encounter a linear inho-
mogeneous equation L(t,D)x = b(t), we first treat it as a homogeneous
equation L(t, D)z = 0. Solving this, we’d have our homogeneous solution xp,.
The next step would be to find one solution that would satisfy L(t, D)x = b(t).



We call this solution z, a particular solution. Since L(t, D) is a linear differ-
ential operator, exploiting the linearity property would allow us to get the full
solution by adding z; and z, together. The following proof formalizes these
steps:

Proof. z(t) is a solution of (*) since:

L(t,D)(xp + zp) = L(t, D)xp, + L(t, D)x), = b(t)
=0 =b(t)
Let = be a solution of (*), and define zj, =  — . Then:

L(t, D)z), = L(t, D) — L(t, D)z, = b(t) — b(t) = OM.

Linear System of Differential Equations

As the name suggests, a time-dependent differential equation models the time
evolution of a physical system. However, even the most specific subsets of
systems in the physical world, albeit elegant and beautiful, are often too com-
plicated to fit into one particular equation describing their evolution. Many
physical, biological, and engineering systems can instead be modeled by mul-
tiple interacting variables, each of which may depend on time (¢), space (x), or
other independent variables. This complexity motivates the shift of our focus
towards the study of systems of differential equations, in particular, we will be
working with linear systems.

Example. Consider a system of first-order ODEs:

xll = fl(tax17x27 7xn)

:Cn = fn(t,I1,$27 "'7xn)

Using our physical interpretation analogy, we can think of the system as a giant
machine, and each of the functions x4 (t), z2(t), ..., x,(t) as parts or ”gears” that
make this machine operate. The evolution of such system is dependent on the
time evolution of each of these parts. Mathematically speaking, the derivative
with respect to ¢ of the whole system, is directly related to the time derivative

% of each of these n functions z;.
The necessity of keeping track of x4, ..., 2/, (and eventually finding a solution for
each component) brings us to the realm of linear algebra, in particular, the
study of vector algebra and related mathematical properties. The idea is to
study the evolution of these functions by considering them as n elements of a
vector x(t) in R™. Hence, the compact nation of a first-order linear system is
the following;:

x' = f(t, x) (%)



where f = (f1,...fn), x = (21, ...,2p), such that z; = 2z4(t). Furthermore, we
have the function f: R® x R D 2 — R” given that x : R > I — R".

Remark. Alternatively, one can write the above compact notations as column
vectors, instead of row vectors. This would be:

2 (t) fi(t,x) S

1
z5(t) f2(t,x) fe
y=| =T =] o) =it

(1) fu(t,x) fa
We say x is a solution to (xx) if the following three conditions are satisfied:
e x is differentiable on I.
o (t,x(t)eQvtel
o (¥ holds Vt e T

So how many solutions will there be that would satisfy these three conditions?
We would, in fact, be expecting an n-parameter family of solutions. Additional
information is needed to specify which of these solutions is the one we seek.

Mathematically speaking, this ”additional info” is what we consider an ”ini-
tial condition”. It provides us with a pair of "points” (to,%o) € 2 such that
x(tg) = x9. Among the family of solutions found previously, there would only
be one x(t) that could satisfy x(tg) = xg, provided that f satisfies certain con-
ditions. In the following section, we elaborate more precisely on what we mean
by this.

Initial Value Problems

Definition. A problem involving a differential equation, together with an ini-
tial condition is called an initival value problem (IVP)

{x’ = f(¢t,x)

X(to) = X

(1)

Remark. Although the focus of these notes is mainly on boundary value
problems, the underlying concepts between those and initial value problems are
identical. The distinction between initial value problems (IVPs) and boundary
value problems (BVPs) lies in the conditions imposed on the solution of the
differential equation.

e I'VPs are concerned with the behavior of a solution at a specific initial
time, hence they are dependent on the time variable ¢.



e BVPs are concerned with the behavior of a solution over a specified do-
main, typically involving conditions at different points within that domain,
hence they are dependent on the spatial variable x.

Example. (Initial Value Problem) Consider a mass-spring system where
a spring is attached to a wall on one end and to a mass on the other end. If
the mass is initially displaced from its equilibrium position and released, it will
oscillate back and forth.

The motion of the mass can be described by a second-order differential equation,
such as )
d“x
m—s- +kxr=0
dt?
where m is the mass, k is the spring constant, x is the displacement from the
equilibrium position, and ¢ is time.

In this scenario, an initial value problem arises because we need to specify the
initial conditions of the system at ¢ = 0, such as the initial displacement (0)

dx
and the initial velocity I . These initial conditions dictate the behavior of
t=0
the system over time.

Example. (Boundary Value Problem): Consider a vibrating string fixed at
both ends and plucked at some initial time. The string vibrates in a transverse
motion, producing waves along its length.

The motion of the string can be described by the wave equation, such as

Pu 0%

o2 = o

where u(z, t) represents the displacement of the string at position = and time ¢,
and c is the wave speed.

In this scenario, a boundary value problem arises because we need to specify
the boundary conditions at both ends of the string. These boundary condi-
tions could include fixing the displacement or specifying the forces at the ends
of the string. For example, we might have conditions such as «(0,¢) = 0 and
u(L,t) = 0, where L is the length of the string. These boundary conditions en-
sure that the ends of the string remain fixed during the vibration, which affects
the pattern of the standing waves formed on the string.

Definition. Similar to the concept of linear differential equations, one can
have a system of linear differential equations. The equation (**) therefore



becomes:

f1 (t,X) an(t)xl + alg(t).Z‘Q + ...+ aln(t)xn + b (t)
fg( ,X) agl(t)’l}l -+ agg(t)(l?2 + ...+ agn(t).’En -+ bg(t)
x' = f(t,x) = ) = .

fn(t,x) an1 ()1 + an2(t) 2 + ... + appn () xn + by ()

air G2 ... Gin z1 by

. a1 G2 ... QG2n T2 bo

— x' = (t) + (1)
anl Gp2 .. Gnp Ty by,
——
A x b
<« x' = A(t)x +b(t) (1)

Remark. Modelling the evolution of a physical system with vector-valued func-
tions is not only motivated by nature but also by the mathematical simplicity
that it provides. Indeed, solving for x(¢) in (}) using well-known techniques
of matrix algebra is far more feasible than dealing with derivatives of order n.
As a matter of fact, it is common practice to reduce a single n-order linear
differential equation to a system of n first-order linear equations:

Regardless of the physical complexity of a phenomenon, consider an ODE of
order n:

™ = f(t,z, 2 2", 2")

This equation can be written as an n-dimensional first-order system of ODE’s.
We do this by introducing new variables:

/ 7z n—1
$1=$,$2:$,$3:$,...,.I‘nzx( )
Then:

) = x9

Ty = X3

xh =24

/

l’n:f(t,xl,l’g, 73377,)

Example: Consider the ODE:

22" —3ta' +4x =13, t>0



This equation can be rewritten as:

Set x1 = x and xo = z’; we obtain the system:

x

Il
8

/
1 25
/
2

| w

x xg—t—Qxl—i—t

= f(t, z, z2)

Having developed so much new machinery, the main question now is how do we
get to solve a linear system? Perhaps even a much more fundamental question
is yet to be investigated. That is: When is a linear system uniquely solvable?
Motivated by such important questions, we introduce the following theorems.

Existence and Uniqueness Theorems

Theorem. (Peano’s Theorem) Assume that f is continuous in a neighbor-
hood of (tg,xg) € R x R™. Then there exists a C! solution to the IVP (1) defined
near tg.

Remark. Peano’s theorem is excellent in proving existence of solutions. How-
ever, it fails to detect uniqueness.

Example. Consider the IVP

x' = /x|
x(0)=0
We see that x;(t) = 0 is a solution. But then:

t2
— fort >0
1 oritv =

0fort<o0

x(t) =
is also a solution. Hence, we need a stronger condition to ensure uniqueness as

well as existence of solutions.

Definition. The function f satisfies a Lipschitz condition in Q if 3L > 0
such that |f(¢,x) — f(t,y)| < L|x —y| ¥(t,x), (t,y) € Q.

Lemma. The Lipschitz condition is satisfied if  is convex and f is Clin a
neighborhood of the closure €.



Theorem. (Picard-Lindel6f) Assume that f is continuous in the neighbor-
hood of (tp,%g) and satisfies a Lipschitz condition there. Then there exists an
open interval I 3 tp in which the IVP has a unique solution.

From this point, we shall freely assume that every function f: R” xR D> 2 — R"™
we work with is Lipschitz continuous, ensuring us that studied systems do have
a unique and well-defined solution.

Solving Linear Systems

We consider a linear system of ODEs:
x' = A(t)x + b(t)

where A(t) is an n X n matrix and b(t), x(¢) are n x 1 matrices.

Homogeneous Equations

Assume that b(¢) = 0.
That is, we consider the homogeneous equation x’ = A(t)x where t € I.
If x1, x5 are solutions, then ax; + bxs is also a solution (a,b € R).

Definition. We denote the linear space of all solutions on I of x' = A(¢)x
by V.
V= {x:x'(t) = A(t)x(t),Vt € I}

Note that V is a function space: x € V evaluated at ¢ty where x(tg) € R™.
We say that k elements x1,Xo,...,Xg in V are linearly dependent if there exist
constants A1, Ag, ..., Ax (not all equal to 0) such that:

k
Z )\ij(t) = O,Vt el
j=1

If they are not linearly dependent, then they are linearly independent. For a fixed
t € I, we say that: x1(¢),x2(t),...xx(t) are linearly dependent if IA1, Ao, ... Ak
(not all equal to 0), such that:

k
Z )\ij (t) =0
j=1
Lemma. Let x1,Xa,...,X; be solutions of x’ = A(t)x. Then the following
statements are equivalent:
a) X1,Xa,...,X; are linearly independent in V.



b) x1(t),x2(t),...,xk(t) are linearly independent in R™ V¢ € T
c¢) x1(to),x2(to), - .., xk(to) are linearly independent in R™ for some tg € I.

Theorem. Let A(t) be a continuous n X n matrix on an open interval I.
The solutions of x’ = A(t)x form a linear space V of dimension n.

Corollary. The solution set of a linear homogeneous ODE of order n, with
constant coefficients in I, is an n-dimensional linear space.

Fundamental Matrices

Definition. Let z1, 29, ..., 2z, be abasis of V. The matrix F(¢) = |x1(t) =x2(t)

is called a fundamental matrix of the equation x’ = A(t)x.

Since x1,Xa, ...,X, are linearly independent, F(t) is invertible for all ¢ € I.
F'(t) = A(t)F(t), since each column of F solves the equation.

Since x1,Xs2,...,X, is a basis of V, any solution can be written as a linear
combination of x1,Xg,...,Xy:

x(t) = Zcixi(t) = F(t)c,

where c is an arbitrary column matrix.

Inhomogeneous Systems
Once again, we consider the equation:
x'(t) = A(t)z + b(t), where b(t) # 0 (*¥*%)

Theorem. Assuming that A(t), b(t) are continuous; let F(z) be the funda-
mental matrix of x’ = A(t)x. Then:

x(t) :F(t)/ F(7)"'b(r)dr

to

***)

is the solution of ( with the initial condition x(t9) = 0.

Corollary. The general solution of the inhomogeneous system (1) can be writ-
ten as:

t
x(t) = F(t)e + F(t)/ F(r)~'b(r)dr
to
Where c is an arbitrary n x 1 matrix.

10

X, (1)



Linear Equations of Order n

Earlier we indicated that reducing a linear ODE of order n to a system of n
first-order ODEs provides us with a much more convenient setting. We now
intend to elaborate on this reduction, and to see how we can solve them using
linear systems. To simplify calculations, the order is assumed to be n = 3.

We consider the equation:

L(t, D)y = g(t), L(t,\) = X* 4+ as()A\* + a1 ()X + ao(t). (1)

Reduction to n = 1: The equation (I) is equivalent to the linear system:

x' = A(t)x+ b(t) (I1)
where:
0 1 0
At) = 0 0 1
—ap (t) —ai (t) —Aas9 (t)
and
0
bt)={( 0
9()
Let 21 =y, 22 = ¢/, 23 = y".
1 (1) y(t)
Solutions x of (II) are of the form x(¢) = [z2(t)| = | ¥'(¢) |, where y solves (I)
3(t) y" (1)

Let X7, X3, X3 be three linearly independent solutions of (IT). And let y1, y2, y3 be
the corresponding solutions of (I). Then we can write the fundamental matrix as:

| | Y1 Y2 Y3 R
Fit)=|X1 X2 X3|= |1 v» v3|=|Ra
| vl vs o Y R3

Where Ry = (y1,¥2,y3), R2 = (y1,¥5,95), Rs = (y1, 5, 95).
We write: ‘ ‘ ‘

F'(t) = K‘l K‘2 K‘s

Using the discussed theorem, we find a solution T of (II):
¢
X(t) = F(t)/ F(7)"'b(7)dr

=F(1) t Ks(7)g(r)dr

11



Remark. Observe that once we solve (II), the resulting solution, X(t), is a
vector-valued function, containing three elements y(t), ¥'(t), and y”(t). But
this is more than we were looking for! The reduction to n = 1 was meant
to simplify calculations for obtaining y(t). Here, however, X(¢) contains more
information than just y(¢). We must therefore extract y(t) from X(¢). That is,
we take the first component of F(¢ ft Ks(r)g(r)dr,

_ Ry () / K (r)g(r)dr

R (0)Ks(7)g(T)dr

to

Let E(t,7) := Ry (t)Ks(7).
Then

y(t) = / E(t,7)g(r)dr

to

solves (I) with initial condition y(tg) = ' (to) = y" (to) = 0.

Remark. This was all very impressive, but it turns out that E(¢,7) can be
characterized in a different way as well. Instead of expressing it as a product of
row and column vectors, one can uniquely determine E(t,7) as the solution of
a differential equation. The following theorem formalizes this idea.

Theorem. Let L(t,\) = A" + a,_1(H)A" 1 + ... + a1 (t)A + ap(t), and let
E(t,7) be the uniquely determined solution of:

L(t,D)u=0

ur)=u(r)=...=u"I(r)=0, u"V(r)=1
Then y(t) = ftto E(t,7)g(7) dr is the solution to the problem:

L(t, D)y = g(t)
y(t) Yy (t) =...= y("—l)(t) -0

Definition.
The function E(¢, 7) is called the fundamental solution of the operator L(t, D).

12



Boundary Value Problems

We are now well-equipped to approach the study of boundary value problems,
where the solution is sought within a given domain, and the conditions are spec-
ified at different points on the boundary of this domain. These conditions can be
of various types, such as specifying the values of the solution at certain points,
prescribing the values of certain derivatives, or imposing integral constraints.

Unlike initial value problems, in which one studied the change of a time-dependent
function z(t), it is common to consider a function y(z) dependent on a spatial
variable x in the study of BVPs, and therefore apply the developed machinery
for initial value problems to boundary value problems.

Definition. A boundary value problem (BVP) is a differential equation,
together with an array of boundary conditions of the form:

L(z,D)y=f;By=c

where L(z,D) = an(x)D™ + an_1(x)D" ! + ... + a1(x)D + ap(z) such that
D= % and a,(z) £ 0 Vz € [, (]

The boundary conditions By = (Byy, Bay, ..., Bhy) = (¢1,¢2, ..., cn) = ¢ € R™.

There are multiple ways one can define boundary conditions. Some examples
are:

Dirichlet BCs:

Neumann BCs:

Robin BCs:
biy(a) + bay'(a) =0
Periodic BCs:
y(a) =y(B)
y'(a) =y (B)
Given the variety of ways to express boundary condition, we seek a general

form to include every possible combination. For an n-th order linear ODE,
where ag, ..., a,, [ are given functions such that a, # 0:

(n—1)

an(2)Y" + an—1(x)y +.otar(z)y +aplz)y=flora<z<p

The general form of the boundary conditions is:

13



Biy=> bﬁ)y(ﬂ'—l)(a) n b%)y(j—l)(ﬁ)

Jj=1

Remark. The exponents («) and () above the coefficients b;j, denote to which
endpoint a, or 8 the coefficient belongs. They do not denote derivatives.

Existence and Uniqueness

Similar to linear systems, the space )V of solutions to the homogeneous ODE
L(z, D)y = 0 is a linear space of dimension n. Let y1, ..., ¥, be a basis and form
the matrix (Biyi)k,i, the following theorem provides us with a certain criteria
to investigate uniqueness.

Theorem. The following statements are equivalent:
(a) The BVP has a unique solution Vf € Cla, 5], and Vc € R™

(b) The homogeneous problem L(x,D)y = 0, By = 0 only has the trivial
solution y(x) = 0.

(c) det(Byy;) # 0

Proof. See page 178 Ordinary Differential Equations by Karl Gustav Andersson
(KGA). 1

Solving Boundary Value Problems

The objective is to derive analytical methods to find solutions y : R D I — R
that satisfy

By = ¢ (1)

{L(l‘, D)y =f
In other words, not only do we have to make sure that y satisfies the ho-
mogeneous version of the equation L(z, D)y = 0, but also ensure that y fits
L(z,D)y = f as well as the boundary conditions. To keep track of all such
requirements, we exploit the linearly of the differential operator L(x, D) and
break down the question into to parts.

A solution y to (1) can be written as: y = y1 + y2, where y; and yo satisfy
the BVPs:

m {L(%D)y =f m {L(x,my -0
By=0 By=c

Since L(x7D)[y1 +ZU2] = L(maD)yl +L($,D)y2 = f+0 = f = L(an)y
And Bly; + y2] =By1 + By =0+ c=c =By

14



Equation II, having solution ys is easy to solve (That is, of course, provided that
the coefficients a; are constants). Similar to initial value problems, we have a
homogeneous equation L(x, D)y = 0 for which we find linearly independent
solutions y1, ..., ¥y, spanning the solution space V.

y(x) =Y pr(x)e”
k=1

where the coefficients p; are determined by plugging-in the boundary conditions
By=c

We now shift our focus on solving the inhomogeneous system IIT with homoge-
neous boundary conditions.

Green’s Function

Remark. An initial value problem (IVP) can be regarded as a boundary value
problem with only one endpoint. Indeed, if one only had some information
about the behavior of the function y(z) at a point a in space, say y(«) and
all its derivatives up to order n — 1 were 0, then the equation (1) would have
become:
= >
{L(m,D)y fr>a 2)

y(a) = y'(a) =...= y(”_l)(a) =0

which is precisely in the form of an initial value problem. In the previous section,
we found the unique solution to such a problem. Denoting the fundamental
solution of L by E(z,£), the unique solution to (2) is given by:

o) = [ B0 s

where E(z,€) is a function that uniquely solves:

L(z,D)u=0
WO =w(©) = =) =0
W=D (8) —

©) an(§)

Now, in the context of boundary value problems, we are interested in the behav-
ior and rate of change of a function y(z) over a specified domain [«, 5]. Hence,
it would make more sense to consider the fundamental solution only in that
particular region and essentially disregard any contribution from the inhomo-
geneous term that occurs at points before our starting point. We can therefore
set the following constraints on the fundamental solution:

Let

Flz,€) = {E(m,{) for x > ¢

0 for z < &

15



B
Now F(z,£)f(&)d¢ would make sure we don’t compute more information

than we need. However, we would also want our solution to satisfy boundary
conditions. Recall that the linearly independent solutions y1,ys,...,y, to the
homogeneous version of this problem L(z, D)y = 0 span a linear space V of
dimension n, and that every other solution is a linear combination of them.
Hence, adding a suitable linear combination of y1, ..., y, to F(x, ) would keep
the resulting solution in the space V while ensuring that it also satisfies the
boundary conditions By = 0. Formalizing this idea, we define the following
function.

Theorem. Let G(x,&) = F(z,£)+d1(&)y1(x)+...+dn(€)yn(x) be the modified
version of the previously calculated (constrained) fundamental solution F'(x,&).
Then:

B
y(z) = / G(x,€) f(€)de

uniquely satisfies the linear system (IIT), and G(z,€) is called the Green’s
Function.

Why are the coefficients d; functions of £7

The coefficients dy(£),d2(€), ..., d,(£) depend on & because they are chosen to
ensure that the resulting function G(z,¢) satisfies the boundary conditions at
each point ¢ within the interval [a, 8]. Note that £ is a dummy variable. We
could have written it ¢, u, or anything else. Its job is to loop through values in
the interval [a, §]. One could think of £ as a ”representative” of the boundaries
«a and f.

In the following subsections, we introduce a powerful framework for solving
BVPs with homogeneous boundary conditions.

Green’s Integral Operator

Let’s review the machinery and formalism that we have developed up until this
point: From this point, we’d like to work with a particular class of functions.
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